Simulation-Based Bias Correction Methods for Complex Models

成果类型:
Article
署名作者:
Guerrier, Stephane; Dupuis-Lozeron, Elise; Ma, Yanyuan; Victoria-Feser, Maria-Pia
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; University of Geneva
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2017.1380031
发表日期:
2019
页码:
146-157
关键词:
time-series models Robust Estimation
摘要:
Along with the ever increasing data size and model complexity, an important challenge frequently encountered in constructing new estimators or in implementing a classical one such as the maximum likelihood estimator, is the computational aspect of the estimation procedure. To carry out estimation, approximate methods such as pseudo-likelihood functions or approximated estimating equations are increasingly used in practice as these methods are typically easier to implement numerically although they can lead to inconsistent and/or biased estimators. In this context, we extend and provide refinements on the known bias correction properties of two simulation-based methods, respectively, indirect inference and bootstrap, each with two alternatives. These results allow one to build a framework defining simulation-based estimators that can be implemented for complex models. Indeed, based on a biased or even inconsistent estimator, several simulation-based methods can be used to define new estimators that are both consistent and with reduced finite sample bias. This framework includes the classical method of the indirect inference for bias correction without requiring specification of an auxiliary model. We demonstrate the equivalence between one version of the indirect inference and the iterative bootstrap, both correct sample biases up to the order n(- 3). The iterative method can be thought of as a computationally efficient algorithm to solve the optimization problem of the indirect inference. Our results provide different tools to correct the asymptotic as well as finite sample biases of estimators and give insight on which method should be applied for the problem at hand. The usefulness of the proposed approach is illustrated with the estimation of robust income distributions and generalized linear latent variable models. Supplementary materials for this article are available online.
来源URL: