Trends in Extreme Value Indices
成果类型:
Article
署名作者:
de Haan, Laurens; Zhou, Chen
署名单位:
Erasmus University Rotterdam; Erasmus University Rotterdam - Excl Erasmus MC; European Central Bank; De Nederlandsche Bank NV; Tinbergen Institute
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2019.1705307
发表日期:
2021
页码:
1265-1279
关键词:
models
摘要:
We consider extreme value analysis for independent but nonidentically distributed observations. In particular, the observations do not share the same extreme value index. Assuming continuously changing extreme value indices, we provide a nonparametric estimate for the functional extreme value index. Besides estimating the extreme value index locally, we also provide a global estimator for the trend and its joint asymptotic theory. The asymptotic theory for the global estimator can be used for testing a prespecified parametric trend in the extreme value indices. In particular, it can be applied to test whether the extreme value index remains at a constant level across all observations.