The Augmented Synthetic Control Method
成果类型:
Article
署名作者:
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse
署名单位:
Harvard University; University of California System; University of California Berkeley; University of California System; University of California Berkeley
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2021.1929245
发表日期:
2021
页码:
1789-1803
关键词:
inference
摘要:
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The synthetic control is a weighted average of control units that balances the treated unit's pretreatment outcomes and other covariates as closely as possible. A critical feature of the original proposal is to use SCM only when the fit on pretreatment outcomes is excellent. We propose Augmented SCM as an extension of SCM to settings where such pretreatment fit is infeasible. Analogous to bias correction for inexact matching, augmented SCM uses an outcome model to estimate the bias due to imperfect pretreatment fit and then de-biases the original SCM estimate. Our main proposal, which uses ridge regression as the outcome model, directly controls pretreatment fit while minimizing extrapolation from the convex hull. This estimator can also be expressed as a solution to a modified synthetic controls problem that allows negative weights on some donor units. We bound the estimation error of this approach under different data-generating processes, including a linear factor model, and show how regularization helps to avoid over-fitting to noise. We demonstrate gains from Augmented SCM with extensive simulation studies and apply this framework to estimate the impact of the 2012 Kansas tax cuts on economic growth. We implement the proposed method in the new augsynth R package.