Forecasting Unemployment Using Internet Search Data via PRISM
成果类型:
Article
署名作者:
Yi, Dingdong; Ning, Shaoyang; Chang, Chia-Jung; Kou, S. C.
署名单位:
Williams College; National University of Singapore; Harvard University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2021.1883436
发表日期:
2021
页码:
1662-1673
关键词:
big-data
time-series
摘要:
Big data generated from the Internet offer great potential for predictive analysis. Here we focus on using online users' Internet search data to forecast unemployment initial claims weeks into the future, which provides timely insights into the direction of the economy. To this end, we present a novel method Penalized Regression with Inferred Seasonality Module (PRISM), which uses publicly available online search data from Google. PRISM is a semiparametric method, motivated by a general state-space formulation, and employs nonparametric seasonal decomposition and penalized regression. For forecasting unemployment initial claims, PRISM outperforms all previously available methods, including forecasting during the 2008-2009 financial crisis period and near-future forecasting during the COVID-19 pandemic period, when unemployment initial claims both rose rapidly. The timely and accurate unemployment forecasts by PRISM could aid government agencies and financial institutions to assess the economic trend and make well-informed decisions, especially in the face of economic turbulence.