More Efficient Policy Learning via Optimal Retargeting
成果类型:
Article
署名作者:
Kallus, Nathan
署名单位:
Cornell University; Cornell University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2020.1788948
发表日期:
2021
页码:
646-658
关键词:
propensity score
treatment rules
摘要:
Policy learning can be used to extract individualized treatment regimes from observational data in healthcare, civics, e-commerce, and beyond. One big hurdle to policy learning is a commonplace lack of overlap in the data for different actions, which can lead to unwieldy policy evaluation and poorly performing learned policies. We study a solution to this problem based on retargeting, that is, changing the population on which policies are optimized. We first argue that at the population level, retargeting may induce little to no bias. We then characterize the optimal reference policy and retargeting weights in both binary-action and multi-action settings. We do this in terms of the asymptotic efficient estimation variance of the new learning objective. We further consider weights that additionally control for potential bias due to retargeting. Extensive empirical results in a simulation study and a case study of personalized job counseling demonstrate that retargeting is a fairly easy way to significantly improve any policy learning procedure applied to observational data.for this article are available online.