A Distributed and Integrated Method of Moments for High-Dimensional Correlated Data Analysis
成果类型:
Article
署名作者:
Hector, Emily C.; Song, Peter X-K
署名单位:
University of Michigan System; University of Michigan
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2020.1736082
发表日期:
2021
页码:
805-818
关键词:
confidence distribution
likelihood approach
sample properties
longitudinal data
models
inference
metaanalysis
regression
parameter
matrix
摘要:
This article is motivated by a regression analysis of electroencephalography (EEG) neuroimaging data with high-dimensional correlated responses with multilevel nested correlations. We develop a divide-and-conquer procedure implemented in a fully distributed and parallelized computational scheme for statistical estimation and inference of regression parameters. Despite significant efforts in the literature, the computational bottleneck associated with high-dimensional likelihoods prevents the scalability of existing methods. The proposed method addresses this challenge by dividing responses into subvectors to be analyzed separately and in parallel on a distributed platform using pairwise composite likelihood. Theoretical challenges related to combining results from dependent data are overcome in a statistically efficient way using a meta-estimator derived from Hansen's generalized method of moments. We provide a rigorous theoretical framework for efficient estimation, inference, and goodness-of-fit tests. We develop an R package for ease of implementation. We illustrate our method's performance with simulations and the analysis of the EEG data, and find that iron deficiency is significantly associated with two auditory recognition memory related potentials in the left parietal-occipital region of the brain. for this article are available online.
来源URL: