Estimating Mixed Memberships With Sharp Eigenvector Deviations
成果类型:
Article
署名作者:
Mao, Xueyu; Sarkar, Purnamrita; Chakrabarti, Deepayan
署名单位:
University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin; University of Texas System; University of Texas Austin
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2020.1751645
发表日期:
2021
页码:
1928-1940
关键词:
overlapping communities
THEOREM
摘要:
We consider the problem of estimating community memberships of nodes in a network, where every node is associated with a vector determining its degree of membership in each community. Existing provably consistent algorithms often require strong assumptions about the population, are computationally expensive, and only provide an overall error bound for the whole community membership matrix. This article provides uniform rates of convergence for the inferred community membership vector ofeachnode in a network generated from the mixed membership stochastic blockmodel (MMSB); to our knowledge, this is the first work to establish per-node rates for overlapping community detection in networks. We achieve this by establishing sharp row-wise eigenvector deviation bounds for MMSB. Based on the simplex structure inherent in the eigen-decomposition of the population matrix, we build on established corner-finding algorithms from the optimization community to infer the community membership vectors. Our results hold over a broad parameter regime where the average degree only grows poly-logarithmically with the number of nodes. Using experiments with simulated and real datasets, we show that our method achieves better error with lower variability over competing methods, and processes real world networks of up to 100,000 nodes within tens of seconds.for this article are available online.
来源URL: