Covariate Adaptive False Discovery Rate Control With Applications to Omics-Wide Multiple Testing
成果类型:
Article
署名作者:
Zhang, Xianyang; Chen, Jun
署名单位:
Texas A&M University System; Texas A&M University College Station; Mayo Clinic; Mayo Clinic
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2020.1783273
发表日期:
2022
页码:
411-427
关键词:
methylation
摘要:
Conventional multiple testing procedures often assume hypotheses for different features are exchangeable. However, in many scientific applications, additional covariate information regarding the patterns of signals and nulls are available. In this article, we introduce an FDR control procedure in large-scale inference problem that can incorporate covariate information. We develop a fast algorithm to implement the proposed procedure and prove its asymptotic validity even when the underlying likelihood ratio model is misspecified and the p-values are weakly dependent (e.g., strong mixing). Extensive simulations are conducted to study the finite sample performance of the proposed method and we demonstrate that the new approach improves over the state-of-the-art approaches by being flexible, robust, powerful, and computationally efficient. We finally apply the method to several omics datasets arising from genomics studies with the aim to identify omics features associated with some clinical and biological phenotypes. We show that the method is overall the most powerful among competing methods, especially when the signal is sparse. The proposed covariate adaptive multiple testing procedure is implemented in the R package CAMT. Supplementary materials for this article are available online.