Causal Bounds for Outcome-Dependent Sampling in Observational Studies
成果类型:
Article
署名作者:
Gabriel, Erin E.; Sachs, Michael C.; Sjolander, Arvid
署名单位:
Karolinska Institutet
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2020.1832502
发表日期:
2022
页码:
939-950
关键词:
instrumental variables
inference
摘要:
Outcome-dependent sampling designs are common in many different scientific fields including epidemiology, ecology, and economics. As with all observational studies, such designs often suffer from unmeasured confounding, which generally precludes the nonparametric identification of causal effects. Nonparametric bounds can provide a way to narrow the range of possible values for a nonidentifiable causal effect without making additional untestable assumptions. The nonparametric bounds literature has almost exclusively focused on settings with random sampling, and the bounds have often been derived with a particular linear programming method. We derive novel bounds for the causal risk difference, often referred to as the average treatment effect, in six settings with outcome-dependent sampling and unmeasured confounding for a binary outcome and exposure. Our derivations of the bounds illustrate two approaches that may be applicable in other settings where the bounding problem cannot be directly stated as a system of linear constraints. We illustrate our derived bounds in a real data example involving the effect of vitamin D concentration on mortality. for this article are available online.