Approximate Selective Inference via Maximum Likelihood

成果类型:
Article
署名作者:
Panigrahi, Snigdha; Taylor, Jonathan
署名单位:
University of Michigan System; University of Michigan; Stanford University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2022.2081575
发表日期:
2023
页码:
2810-2820
关键词:
model-selection variable selection
摘要:
Several strategies have been developed recently to ensure valid inference after model selection; some of these are easy to compute, while others fare better in terms of inferential power. In this article, we consider a selective inference framework for Gaussian data. We propose a new method for inference through approximate maximum likelihood estimation. Our goal is to: (a) achieve better inferential power with the aid of randomization, (b) bypass expensive MCMC sampling from exact conditional distributions that are hard to evaluate in closed forms. We construct approximate inference, for example, p-values, confidence intervals etc., by solving a fairly simple, convex optimization problem. We illustrate the potential of our method across wide-ranging values of signal-to-noise ratio in simulations. On a cancer gene expression dataset we find that our method improves upon the inferential power of some commonly used strategies for selective inference. Supplementary materials for this article are available online.