A Joint MLE Approach to Large-Scale Structured Latent Attribute Analysis
成果类型:
Article
署名作者:
Gu, Yuqi; Xu, Gongjun
署名单位:
Columbia University; University of Michigan System; University of Michigan
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2021.1955689
发表日期:
2023
页码:
746-760
关键词:
Factor Models
irt models
Identifiability
摘要:
Structured latent attribute models (SLAMs) are a family of discrete latent variable models widely used in education, psychology, and epidemiology to model multivariate categorical data. A SLAM assumes that multiple discrete latent attributes explain the dependence of observed variables in a highly structured fashion. Usually, the maximum marginal likelihood estimation approach is adopted for SLAMs, treating the latent attributes as random effects. The increasing scope of modern assessment data involves large numbers of observed variables and high-dimensional latent attributes. This poses challenges to classical estimation methods and requires new methodology and understanding of latent variable modeling. Motivated by this, we consider the joint maximum likelihood estimation (MLE) approach to SLAMs, treating latent attributes as fixed unknown parameters. We investigate estimability, consistency, and computation in the regime where sample size, number of variables, and number of latent attributes all can diverge. We establish the statistical consistency of the joint MLE and propose efficient algorithms that scale well to large-scale data for several popular SLAMs. Simulation studies demonstrate the superior empirical performance of the proposed methods. An application to real data from an international educational assessment gives interpretable findings of cognitive diagnosis.