Inference and Estimation for Random Effects in High-Dimensional Linear Mixed Models
成果类型:
Article
署名作者:
Law, Michael; Ritov, Ya'acov
署名单位:
University of Michigan System; University of Michigan
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2021.2004896
发表日期:
2023
页码:
1682-1691
关键词:
Empirical Bayes
selection
摘要:
We consider three problems in high-dimensional linear mixed models. Without any assumptions on the design for the fixed effects, we construct asymptotic statistics for testing whether a collection of random effects is zero, derive an asymptotic confidence interval for a single random effect at the parametric rate root n, and propose an empirical Bayes estimator for a part of the mean vector in ANOVA type models that performs asymptotically as well as the oracle Bayes estimator. We support our theoretical results with numerical simulations and provide comparisons with oracle estimators. The procedures developed are applied to the Trends in International Mathematics and Sciences Study (TIMSS) data. Supplementary materials for this article are available online.