Efficient Estimation for Random Dot Product Graphs via a One-Step Procedure

成果类型:
Article
署名作者:
Xie, Fangzheng; Xu, Yanxun
署名单位:
Indiana University System; Indiana University Bloomington; Johns Hopkins University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2021.1948419
发表日期:
2023
页码:
651-664
关键词:
hypothesis-testing problem vertex classification eigenvectors laplacian
摘要:
We propose a one-step procedure to estimate the latent positions in random dot product graphs efficiently. Unlike the classical spectral-based methods, the proposed one-step procedure takes advantage of both the low-rank structure of the expected adjacency matrix and the Bernoulli likelihood information of the sampling model simultaneously. We show that for each vertex, the corresponding row of the one-step estimator (OSE) converges to a multivariate normal distribution after proper scaling and centering up to an orthogonal transformation, with an efficient covariance matrix. The initial estimator for the one-step procedure needs to satisfy the so-called approximate linearization property. The OSE improves the commonly adopted spectral embedding methods in the following sense: Globally for all vertices, it yields an asymptotic sum of squares error no greater than those of the spectral methods, and locally for each vertex, the asymptotic covariance matrix of the corresponding row of the OSE dominates those of the spectral embeddings in spectra. The usefulness of the proposed one-step procedure is demonstrated via numerical examples and the analysis of a real-world Wikipedia graph dataset.