Nonparametric Functional Graphical Modeling Through Functional Additive Regression Operator

成果类型:
Article
署名作者:
Lee, Kuang-Yao; Li, Lexin; Li, Bing; Zhao, Hongyu
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University; University of California System; University of California Berkeley; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Yale University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2021.2006667
发表日期:
2023
页码:
1718-1732
关键词:
VARIABLE SELECTION COVARIANCE ESTIMATION matrix Consistency networks
摘要:
In this article, we develop a nonparametric graphical model for multivariate random functions. Most existing graphical models are restricted by the assumptions of multivariate Gaussian or copula Gaussian distributions, which also imply linear relations among the random variables or functions on different nodes. We relax those assumptions by building our graphical model based on a new statistical object-the functional additive regression operator. By carrying out regression and neighborhood selection at the operator level, our method can capture nonlinear relations without requiring any distributional assumptions. Moreover, the method is built up using only one-dimensional kernel, thus, avoids the curse of dimensionality from which a fully nonparametric approach often suffers, and enables us to work with large-scale networks. We derive error bounds for the estimated regression operator and establish graph estimation consistency, while allowing the number of functions to diverge at the exponential rate of the sample size. We demonstrate the efficacy of our method by both simulations and analysis of an electroencephalography dataset. Supplementary materials for this article are available online.