Linear-Cost Covariance Functions for Gaussian Random Fields
成果类型:
Article
署名作者:
Chen, Jie; Stein, Michael L.
署名单位:
International Business Machines (IBM); IBM USA; Rutgers University System; Rutgers University New Brunswick
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2021.1919122
发表日期:
2023
页码:
147-164
关键词:
fixed-domain asymptotics
fast multipole method
cholesky factorization
parameter-estimation
PROCESS MODELS
matrix
approximation
likelihood
efficient
algorithms
摘要:
Gaussian random fields (GRF) are a fundamental stochastic model for spatiotemporal data analysis. An essential ingredient of GRF is the covariance function that characterizes the joint Gaussian distribution of the field. Commonly used covariance functions give rise to fully dense and unstructured covariance matrices, for which required calculations are notoriously expensive to carry out for large data. In this work, we propose a construction of covariance functions that result in matrices with a hierarchical structure. Empowered by matrix algorithms that scale linearly with the matrix dimension, the hierarchical structure is proved to be efficient for a variety of random field computations, including sampling, kriging, and likelihood evaluation. Specifically, with n scattered sites, sampling and likelihood evaluation has an O(n) cost and kriging has an O(log n) cost after preprocessing, particularly favorable for the kriging of an extremely large number of sites (e.g., predicting on more sites than observed). We demonstrate comprehensive numerical experiments to show the use of the constructed covariance functions and their appealing computation time. Numerical examples on a laptop include simulated data of size up to one million, as well as a climate data product with over two million observations.