Permutation Tests at Nonparametric Rates
成果类型:
Article
署名作者:
Bertanha, Marinho; Chung, Eunyi
署名单位:
University of Notre Dame; University of Illinois System; University of Illinois Urbana-Champaign
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2022.2087660
发表日期:
2023
页码:
2833-2846
关键词:
confidence-intervals
randomization tests
order-statistics
regression
inference
robust
bootstrap
density
摘要:
Classical two-sample permutation tests for equality of distributions have exact size in finite samples, but they fail to control size for testing equality of parameters that summarize each distribution. This article proposes permutation tests for equality of parameters that are estimated at root-n or slower rates. Our general framework applies to both parametric and nonparametric models, with two samples or one sample split into two subsamples. Our tests have correct size asymptotically while preserving exact size in finite samples when distributions are equal. They have no loss in local asymptotic power compared to tests that use asymptotic critical values. We propose confidence sets with correct coverage in large samples that also have exact coverage in finite samples if distributions are equal up to a transformation. We apply our theory to four commonly-used hypothesis tests of nonparametric functions evaluated at a point. Lastly, simulations show good finite sample properties, and two empirical examples illustrate our tests in practice. Supplementary materials for this article are available online.
来源URL: