Confidently Comparing Estimates with the c-value
成果类型:
Article
署名作者:
Trippe, Brian L.; Deshpande, Sameer K.; Broderick, Tamara
署名单位:
Columbia University; University of Wisconsin System; University of Wisconsin Madison; Massachusetts Institute of Technology (MIT)
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2022.2153688
发表日期:
2024
页码:
983-994
关键词:
error
摘要:
Modern statistics provides an ever-expanding toolkit for estimating unknown parameters. Consequently, applied statisticians frequently face a difficult decision: retain a parameter estimate from a familiar method or replace it with an estimate from a newer or more complex one. While it is traditional to compare estimates using risk, such comparisons are rarely conclusive in realistic settings. In response, we propose the c-value as a measure of confidence that a new estimate achieves smaller loss than an old estimate on a given dataset. We show that it is unlikely that a large c-value coincides with a larger loss for the new estimate. Therefore, just as a small p-value supports rejecting a null hypothesis, a large c-value supports using a new estimate in place of the old. For a wide class of problems and estimates, we show how to compute a c-value by first constructing a data-dependent high-probability lower bound on the difference in loss. The c-value is frequentist in nature, but we show that it can provide validation of shrinkage estimates derived from Bayesian models in real data applications involving hierarchical models and Gaussian processes. Supplementary materials for this article are available online.