De-confounding Causal Inference Using Latent Multiple-Mediator Pathways
成果类型:
Article
署名作者:
Yuan, Yubai; Qu, Annie
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; University of California System; University of California Irvine
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2023.2240461
发表日期:
2024
页码:
2051-2065
关键词:
dna methylation
cigarette-smoking
nonlinear ica
death
variables
HEALTH
cancer
RISK
BIAS
摘要:
Causal effect estimation from observational data is one of the essential problems in causal inference. However, most estimation methods rely on the strong assumption that all confounders are observed, which is impractical and untestable in the real world. We develop a mediation analysis framework inferring the latent confounder for debiasing both direct and indirect causal effects. Specifically, we introduce generalized structural equation modeling that incorporates structured latent factors to improve the goodness-of-fit of the model to observed data, and deconfound the mediators and outcome simultaneously. One major advantage of the proposed framework is that it uses the causal pathway structure from cause to outcome via multiple mediators to debias the causal effect without requiring external information on latent confounders. In addition, the proposed framework is flexible in terms of integrating powerful nonparametric prediction algorithms while retaining interpretable mediation effects. In theory, we establish the identification of both causal and mediation effects based on the proposed deconfounding method. Numerical experiments on both simulation settings and a normative aging study indicate that the proposed approach reduces the estimation bias of both causal and mediation effects. Supplementary materials for this article are available online.