Value Enhancement of Reinforcement Learning via Efficient and Robust Trust Region Optimization
成果类型:
Article
署名作者:
Shi, Chengchun; Qi, Zhengling; Wang, Jianing; Zhou, Fan
署名单位:
University of London; London School Economics & Political Science; George Washington University; Shanghai University of Finance & Economics
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2023.2238942
发表日期:
2024
页码:
2011-2025
关键词:
dynamic treatment regimes
摘要:
Reinforcement learning (RL) is a powerful machine learning technique that enables an intelligent agent to learn an optimal policy that maximizes the cumulative rewards in sequential decision making. Most of methods in the existing literature are developed in online settings where the data are easy to collect or simulate. Motivated by high stake domains such as mobile health studies with limited and pre-collected data, in this article, we study offline reinforcement learning methods. To efficiently use these datasets for policy optimization, we propose a novel value enhancement method to improve the performance of a given initial policy computed by existing state-of-the-art RL algorithms. Specifically, when the initial policy is not consistent, our method will output a policy whose value is no worse and often better than that of the initial policy. When the initial policy is consistent, under some mild conditions, our method will yield a policy whose value converges to the optimal one at a faster rate than the initial policy, achieving the desired value enhancement property. The proposed method is generally applicable to any parameterized policy that belongs to certain pre-specified function class (e.g., deep neural networks). Extensive numerical studies are conducted to demonstrate the superior performance of our method. Supplementary materials for this article are available online.