Conformal Sensitivity Analysis for Individual Treatment Effects

成果类型:
Article
署名作者:
Yin, Mingzhang; Shi, Claudia; Wang, Yixin; Blei, David M.
署名单位:
State University System of Florida; University of Florida; Columbia University; University of Michigan System; University of Michigan; Columbia University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2022.2102503
发表日期:
2024
页码:
122-135
关键词:
Causal Inference covariate bands
摘要:
Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To assess the robustness of individual-level causal conclusion with unconfoundedness, this paper proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model [Ros2002, Tan2006], and adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis problem as a conformal inference problem under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The result is a predictive interval that has guaranteed nominal coverage of the ITE, a method that provides coverage with distribution-free and nonasymptotic guarantees. We evaluate the method on synthetic data and illustrate its application in an observational study.