Subspace Estimation with Automatic Dimension and Variable Selection in Sufficient Dimension Reduction
成果类型:
Article
署名作者:
Zeng, Jing; Mai, Qing; Zhang, Xin
署名单位:
Chinese Academy of Sciences; University of Science & Technology of China, CAS; State University System of Florida; Florida State University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2022.2118601
发表日期:
2024
页码:
343-355
关键词:
sliced inverse regression
rates
摘要:
Sufficient dimension reduction (SDR) methods target finding lower-dimensional representations of a multivariate predictor to preserve all the information about the conditional distribution of the response given the predictor. The reduction is commonly achieved by projecting the predictor onto a low-dimensional subspace. The smallest such subspace is known as the Central Subspace (CS) and is the key parameter of interest for most SDR methods. In this article, we propose a unified and flexible framework for estimating the CS in high dimensions. Our approach generalizes a wide range of model-based and model-free SDR methods to high-dimensional settings, where the CS is assumed to involve only a subset of the predictors. We formulate the problem as a quadratic convex optimization so that the global solution is feasible. The proposed estimation procedure simultaneously achieves the structural dimension selection and coordinate-independent variable selection of the CS. Theoretically, our method achieves dimension selection, variable selection, and subspace estimation consistency at a high convergence rate under mild conditions. We demonstrate the effectiveness and efficiency of our method with extensive simulation studies and real data examples. for this article are available online.