Bayesian Modeling with Spatial Curvature Processes
成果类型:
Article
署名作者:
Halder, Aritra; Banerjee, Sudipto; Dey, Dipak K.
署名单位:
Drexel University; University of California System; University of California Los Angeles; University of Connecticut
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2023.2177166
发表日期:
2024
页码:
1155-1167
关键词:
gradients
prices
rates
摘要:
Spatial process models are widely used for modeling point-referenced variables arising from diverse scientific domains. Analyzing the resulting random surface provides deeper insights into the nature of latent dependence within the studied response. We develop Bayesian modeling and inference for rapid changes on the response surface to assess directional curvature along a given trajectory. Such trajectories or curves of rapid change, often referred to as wombling boundaries, occur in geographic space in the form of rivers in a flood plain, roads, mountains or plateaus or other topographic features leading to high gradients on the response surface. We demonstrate fully model based Bayesian inference on directional curvature processes to analyze differential behavior in responses along wombling boundaries. We illustrate our methodology with a number of simulated experiments followed by multiple applications featuring the Boston Housing data; Meuse river data; and temperature data from the Northeastern United States. Supplementary materials for this article are available online.