Estimating Cell-Type-Specific Gene Co-Expression Networks from Bulk Gene Expression Data with an Application to Alzheimer's Disease

成果类型:
Article
署名作者:
Su, Chang; Zhang, Jingfei; Zhao, Hongyu
署名单位:
Emory University; Yale University; Emory University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2023.2297467
发表日期:
2024
页码:
811-824
关键词:
selection
摘要:
Inferring and characterizing gene co-expression networks has led to important insights on the molecular mechanisms of complex diseases. Most co-expression analyses to date have been performed on gene expression data collected from bulk tissues with different cell type compositions across samples. As a result, the co-expression estimates only offer an aggregated view of the underlying gene regulations and can be confounded by heterogeneity in cell type compositions, failing to reveal gene coordination that may be distinct across different cell types. In this article, we introduce a flexible framework for estimating cell-type-specific gene co-expression networks from bulk sample data, without making specific assumptions on the distributions of gene expression profiles in different cell types. We develop a novel sparse least squares estimator, referred to as CSNet, that is efficient to implement and has good theoretical properties. Using CSNet, we analyzed the bulk gene expression data from a cohort study on Alzheimer's disease and identified previously unknown cell-type-specific co-expressions among Alzheimer's disease risk genes, suggesting cell-type-specific disease mechanisms. Supplementary materials for this article are available online.