An Efficient Coalescent Model for Heterochronously Sampled Molecular Data
成果类型:
Article
署名作者:
Cappello, Lorenzo; Veber, Amandine; Palacios, Julia A.
署名单位:
Pompeu Fabra University; Barcelona School of Economics; Centre National de la Recherche Scientifique (CNRS); Universite Paris Cite; Stanford University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2024.2330732
发表日期:
2024
页码:
2437-2449
关键词:
phylogenetic inference
bayesian-inference
population
sites
HISTORY
number
摘要:
Molecular sequence variation at a locus informs about the evolutionary history of the sample and past population size dynamics. The Kingman coalescent is used in a generative model of molecular sequence variation to infer evolutionary parameters. However, it is well understood that inference under this model does not scale well with sample size. Here, we build on recent work based on a lower resolution coalescent process, the Tajima coalescent, to model longitudinal samples. While the Kingman coalescent models the ancestry of labeled individuals, we model the ancestry of individuals labeled by their sampling time. We propose a new inference scheme for the reconstruction of effective population size trajectories based on this model and the infinite-sites mutation model. Modeling of longitudinal samples is necessary for applications (e.g., ancient DNA and RNA from rapidly evolving pathogens like viruses) and statistically desirable (variance reduction and parameter identifiability). We propose an efficient algorithm to calculate the likelihood and employ a Bayesian nonparametric procedure to infer the population size trajectory. We provide a new MCMC sampler to explore the space of heterochronous Tajima's genealogies and model parameters. We compare our procedure with state-of-the-art methodologies in simulations and an application to ancient bison DNA sequences. Supplementary materials for this article are available online including a standardized description of the materials available for reproducing the work.