Large-Scale Two-Sample Comparison of Support Sets

成果类型:
Article
署名作者:
Geng, Haoyu; Cui, Xiaolong; Ren, Haojie; Zou, Changliang
署名单位:
Nankai University; Nankai University; Shanghai Jiao Tong University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2023.2210337
发表日期:
2024
页码:
1604-1618
关键词:
false discovery rate cell lung-cancer confidence-intervals tests gene expression connectivity regression selection
摘要:
Two-sample multiple testing has a wide range of applications. Most of the literature considers simultaneous tests of equality of parameters. The article takes a different perspective and investigates the null hypotheses that the two support sets are equal. This formulation of the testing problem is motivated by the fact that in many applications where the two parameter vectors being compared are both sparse, one might be more concerned about the detection of differential sparsity structures rather than the difference in parameter magnitudes. Focusing on this type of problem, we develop a general approach, which adapts the newly proposed symmetry data aggregation tool combined with a novel double thresholding (DT) filter. The DT filter first constructs a sequence of pairs of ranking statistics that fulfill global symmetry properties and then chooses two data-driven thresholds along the ranking to simultaneously control the False Discovery Rate (FDR) and maximize the number of rejections. Several applications of the methodology are given including high-dimensional linear models and Gaussian graphical models. We show that the proposed method is able to asymptotically control the FDR and have power guarantee under certain conditions. Numerical results confirm the effectiveness and robustness of DT in FDR control and detection ability. for this article are available online.