HAC Covariance Matrix Estimation in Quantile Regression

成果类型:
Article
署名作者:
Galvao, Antonio F.; Yoon, Jungmo
署名单位:
Michigan State University; Hanyang University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2023.2257365
发表日期:
2024
页码:
2305-2316
关键词:
robust standard errors inference heteroskedasticity bootstrap kernel
摘要:
This study considers an estimator for the asymptotic variance-covariance matrix in time-series quantile regression models which is robust to the presence of heteroscedasticity and autocorrelation. When regression errors are serially correlated, the conventional quantile regression standard errors are invalid. The proposed solution is a quantile analogue of the Newey-West robust standard errors. We establish the asymptotic properties of the heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimator and provide an optimal bandwidth selection rule. The quantile sample autocorrelation coefficient is biased toward zero in finite sample which adversely affects the optimal bandwidth estimation. We propose a simple alternative estimator that effectively reduces the finite sample bias. Numerical simulations provide evidence that the proposed HAC covariance matrix estimator significantly improves the size distortion problem. To illustrate the usefulness of the proposed robust standard error, we examine the impacts of the expansion of renewable energy resources on electricity prices. Supplementary materials for this article are available online.
来源URL: