Parallel Sampling of Decomposable Graphs Using Markov Chains on Junction Trees

成果类型:
Article
署名作者:
Elmasri, Mohamad
署名单位:
University of Toronto; Alan Turing Institute
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2024.2388908
发表日期:
2025
页码:
963-975
关键词:
wishart distributions variance reduction LAWS likelihood
摘要:
Bayesian inference for undirected graphical models is mostly restricted to the class of decomposable graphs, as they enjoy a rich set of properties making them amenable to high-dimensional problems. While parameter inference is straightforward in this setup, inferring the underlying graph is a challenge driven by the computational difficulty in exploring the space of decomposable graphs. This work makes two contributions to address this problem. First, we provide sufficient and necessary conditions for when multi-edge perturbations maintain decomposability of the graph. Using these, we characterize a simple class of partitions that efficiently classify all edge perturbations by whether they maintain decomposability. Second, we propose a novel parallel nonreversible Markov chain Monte Carlo sampler for distributions over junction tree representations of the graph. At every step, the parallel sampler executes simultaneously all edge perturbations within a partition. Through simulations, we demonstrate the efficiency of our new edge perturbation conditions and class of partitions. We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-art methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.