Node-Level Community Detection within Edge Exchangeable Models for Interaction Processes

成果类型:
Article
署名作者:
Zhang, Yuhua; Dempsey, Walter
署名单位:
University of Michigan System; University of Michigan; Harvard University
刊物名称:
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
ISSN/ISSBN:
0162-1459
DOI:
10.1080/01621459.2024.2358560
发表日期:
2025
页码:
764-778
关键词:
selection networks
摘要:
Scientists are increasingly interested in discovering community structure from modern relational data arising on large-scale social networks. While many methods have been proposed for learning community structure, few account for the fact that these modern networks arise from processes of interactions in the population. We introduce block edge exchangeable models (BEEM) for the study of interaction networks with latent node-level community structure. The block vertex components model (B-VCM) is derived as a canonical example. Several theoretical and practical advantages over traditional vertex-centric approaches are highlighted. In particular, BEEMs allow for sparse degree structure and power-law degree distributions within communities. Our theoretical analysis bounds the misspecification rate of block assignments while supporting simulations show the properties of the network can be recovered. A computationally tractable Gibbs algorithm is derived. We demonstrate the proposed model using post-comment interaction data from Talklife, a large-scale online peer-to-peer support network, and contrast the learned communities from those using standard algorithms including degree-corrected stochastic block models, popularity-adjusted block models, and weighted stochastic block models. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.