APPROXIMATING POSTERIOR DISTRIBUTIONS BY MIXTURES
成果类型:
Article
署名作者:
WEST, M
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
发表日期:
1993
页码:
409-422
关键词:
monte-carlo
integration
摘要:
Kernel density estimation techniques are used to smooth simulated samples from importance sampling function approximations to posterior distributions, resulting in revised approximations that are mixtures of standard parametric forms, usually multivariate normal or T-distributions. Adaptive refinement of such mixture approximations involves repeating this process to home-in successively on the posterior. In fairly low dimensional problems, this provides a general and automatic method of approximating posteriors by mixtures, so that marginal densities and other summaries may be easily computed. This is discussed and illustrated, with comment on variations and extensions suited to sequential Bayesian updating of Monte Carlo approximations, an area in which existing and alternative numerical methods are difficult to apply.