Mixture Kalman filters

成果类型:
Article
署名作者:
Chen, R; Liu, JS
署名单位:
Texas A&M University System; Texas A&M University College Station; Stanford University
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/1467-9868.00246
发表日期:
2000
页码:
493-508
关键词:
state-space models sequential imputations simulation
摘要:
In treating dynamic systems, sequential Monte Carte methods use discrete samples to represent a complicated probability distribution and use rejection sampling, importance sampling and weighted resampling to complete the on-line 'filtering' task. We propose a special sequential Monte Carlo method, the mixture Kalman filter, which uses a random mixture of the Gaussian distributions to approximate a target distribution. It is designed for on-line estimation and prediction of conditional and partial conditional dynamic linear models, which are themselves a class of widely used non-linear systems and also serve to approximate many others. Compared with a few available filtering methods including Monte Carte methods, the gain in efficiency that is provided by the mixture Kalman filter can be very substantial. Another contribution of the paper is the formulation of many non-linear systems into conditional or partial conditional linear form, to which the mixture Kalman filter can be applied. Examples in target tracking and digital communications are given to demonstrate the procedures proposed.