A penalized likelihood approach to image warping

成果类型:
Article
署名作者:
Glasbey, CA; Mardia, KV
署名单位:
James Hutton Institute; University of Leeds
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/1467-9868.00295
发表日期:
2001
页码:
465-492
关键词:
shape-analysis Object recognition REGISTRATION SAR restoration distance SPACE MODEL
摘要:
A warping is a function that deforms images by mapping between image domains. The choice of function is formulated statistically as maximum penalized likelihood, where the likelihood measures the similarity between images after warping and the penalty is a measure of distortion of a warping. The paper addresses two issues simultaneously, of how to choose the warping function and how to assess the alignment. A new, Fourier-von Mises image model is identified, with phase differences between Fourier-transformed images having von Mises distributions. Also, new, null set distortion criteria are proposed, with each criterion uniquely minimized by a particular set of polynomial functions. A conjugate gradient algorithm is used to estimate the warping function, which is numerically approximated by a piecewise bilinear function. The method is motivated by, and used to solve, three applied problems: to register a remotely sensed image with a map, to align microscope images obtained by using different optics and to discriminate between species of fish from photographic images.