Free-knot polynomial splines with confidence intervals

成果类型:
Article
署名作者:
Mao, WX; Zhao, LH
署名单位:
University of Pennsylvania
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1046/j.1369-7412.2003.00422.x
发表日期:
2003
页码:
901-919
关键词:
Nonparametric regression selection variance bands
摘要:
We construct approximate confidence intervals for a nonparametric regression function, using polynomial splines with free-knot locations. The number of knots is determined by generalized cross-validation. The estimates of knot locations and coefficients are obtained through a non-linear least squares solution that corresponds to the maximum likelihood estimate. Confidence intervals are then constructed based on the asymptotic distribution of the maximum likelihood estimator. Average coverage probabilities and the accuracy of the estimate are examined via simulation. This includes comparisons between our method and some existing methods such as smoothing spline and variable knots selection as well as a Bayesian version of the variable knots method. Simulation results indicate that our method works well for smooth underlying functions and also reasonably well for discontinuous functions. It also performs well for fairly small sample sizes.