Estimation of dependence between paired correlated failure times in the presence of covariate measurement error
成果类型:
Article
署名作者:
Gorfine, M; Hsu, L; Prentice, RL
署名单位:
Bar Ilan University
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/1467-9868.00407
发表日期:
2003
页码:
643-661
关键词:
LIKELIHOOD-ESTIMATION
cox regression
parameter
models
association
calibration
variables
摘要:
dIn many biomedical studies, covariates are subject to measurement error. Although it is well known that the regression coefficients estimators can be substantially biased if the measurement error is not accommodated, there has been little study of the effect of covariate measurement error on the estimation of the dependence between bivariate failure times. We show that the dependence parameter estimator in the Clayton-Oakes model can be considerably biased if the measurement error in the covariate is not accommodated. In contrast with the typical bias towards the null for marginal regression coefficients, the dependence parameter can be biased in either direction. We introduce a bias reduction technique for the bivariate survival function in copula models while assuming an additive measurement error model and replicated measurement for the covariates, and we study the large and small sample properties of the dependence parameter estimator proposed.
来源URL: