Real nonparametric regression using complex wavelets

成果类型:
Article
署名作者:
Barber, S; Nason, GP
署名单位:
University of Bristol
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2004.B5604.x
发表日期:
2004
页码:
927-939
关键词:
non-centrality parameter daubechies wavelets shrinkage DECOMPOSITION
摘要:
Wavelet shrinkage is an effective nonparametric regression technique, especially when the underlying curve has irregular features such as spikes or discontinuities. The basic idea is simple: take the discrete wavelet transform of data consisting of a signal corrupted by noise; shrink or remove the wavelet coefficients to remove the noise; then invert the discrete wavelet transform to form an estimate of the true underlying curve. Various researchers have proposed increasingly sophisticated methods of doing this by using real-valued wavelets. Complex-valued wavelets exist but are rarely used. We propose two new complex-valued wavelet shrinkage techniques: one based on multiwavelet style shrinkage and the other using Bayesian methods. Extensive simulations show that our methods almost always give significantly more accurate estimates than methods based on real-valued wavelets. Further, our multiwavelet style shrinkage method is both simpler and dramatically faster than its competitors. To understand the excellent performance of this method we present a new risk bound on its hard thresholded coefficients.