Sure independence screening for ultrahigh dimensional feature space
成果类型:
Article
署名作者:
Fan, Jianqing; Lv, Jinchi
署名单位:
Princeton University; University of Southern California
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2008.00674.x
发表日期:
2008
页码:
849-883
关键词:
nonconcave penalized likelihood
variable selection
smallest eigenvalue
Lasso
cancer
MODEL
REPRESENTATION
persistence
limit
摘要:
Variable selection plays an important role in high dimensional statistical modelling which nowadays appears in many areas and is key to various scientific discoveries. For problems of large scale or dimensionality p, accuracy of estimation and computational cost are two top concerns. Recently, Candes and Tao have proposed the Dantzig selector using L-1-regularization and showed that it achieves the ideal risk up to a logarithmic factor log(p). Their innovative procedure and remarkable result are challenged when the dimensionality is ultrahigh as the factor log(p) can be large and their uniform uncertainty principle can fail. Motivated by these concerns, we introduce the concept of sure screening and propose a sure screening method that is based on correlation learning, called sure independence screening, to reduce dimensionality from high to a moderate scale that is below the sample size. In a fairly general asymptotic framework, correlation learning is shown to have the sure screening property for even exponentially growing dimensionality. As a methodological extension, iterative sure independence screening is also proposed to enhance its finite sample performance. With dimension reduced accurately from high to below sample size, variable selection can be improved on both speed and accuracy, and can then be accomplished by a well-developed method such as smoothly clipped absolute deviation, the Dantzig selector, lasso or adaptive lasso. The connections between these penalized least squares methods are also elucidated.
来源URL: