Particle filters for partially observed diffusions
成果类型:
Article
署名作者:
Fearnhead, Paul; Papaspiliopoulos, Omiros; Roberts, Gareth O.
署名单位:
Lancaster University; University of Warwick
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2008.00661.x
发表日期:
2008
页码:
755-777
关键词:
monte-carlo methods
exact simulation
摘要:
We introduce a novel particle filter scheme for a class of partially observed multivariate diffusions. We consider a variety of observation schemes, including diffusion observed with error, observation of a subset of the components of the multivariate diffusion and arrival times of a Poisson process whose intensity is a known function of the diffusion (Cox process). Unlike currently available methods, our particle filters do not require approximations of the transition and/or the observation density by using time discretizations. Instead, they build on recent methodology for the exact simulation of the diffusion process and the unbiased estimation of the transition density. We introduce the generalized Poisson estimator, which generalizes the Poisson estimator of Beskos and co-workers. A central limit theorem is given for our particle filter scheme.
来源URL: