Bayesian model selection using test statistics
成果类型:
Article
署名作者:
Hu, Jianhua; Johnson, Valen E.
署名单位:
University of Texas System; UTMD Anderson Cancer Center
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2008.00678.x
发表日期:
2009
页码:
143-158
关键词:
VARIABLE SELECTION
asymptotic properties
criteria
CONVERGENCE
uncertainty
摘要:
Existing Bayesian model selection procedures require the specification of prior distributions on the parameters appearing in every model in the selection set. In practice, this requirement limits the application of Bayesian model selection methodology. To overcome this limitation, we propose a new approach towards Bayesian model selection that uses classical test statistics to compute Bayes factors between possible models. In several test cases, our approach produces results that are similar to previously proposed Bayesian model selection and model averaging techniques in which prior distributions were carefully chosen. In addition to eliminating the requirement to specify complicated prior distributions, this method offers important computational and algorithmic advantages over existing simulation-based methods. Because it is easy to evaluate the operating characteristics of this procedure for a given sample size and specified number of covariates, our method facilitates the selection of hyperparameter values through prior-predictive simulation.