DASSO: connections between the Dantzig selector and lasso
成果类型:
Article
署名作者:
James, Gareth M.; Radchenko, Peter; Lv, Jinchi
署名单位:
University of Southern California
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2008.00668.x
发表日期:
2009
页码:
127-142
关键词:
robust uncertainty principles
statistical estimation
variable selection
larger
EQUATIONS
RECOVERY
摘要:
We propose a new algorithm, DASSO, for fitting the entire coefficient path of the Dantzig selector with a similar computational cost to the least angle regression algorithm that is used to compute the lasso. DASSO efficiently constructs a piecewise linear path through a sequential simplex-like algorithm, which is remarkably similar to the least angle regression algorithm. Comparison of the two algorithms sheds new light on the question of how the lasso and Dantzig selector are related. In addition, we provide theoretical conditions on the design matrix X under which the lasso and Dantzig selector coefficient estimates will be identical for certain tuning parameters. As a consequence, in many instances, we can extend the powerful non-asymptotic bounds that have been developed for the Dantzig selector to the lasso. Finally, through empirical studies of simulated and real world data sets we show that in practice, when the bounds hold for the Dantzig selector, they almost always also hold for the lasso.
来源URL: