Efficient probabilistic forecasts for counts
成果类型:
Article
署名作者:
McCabe, Brendan P. M.; Martin, Gael M.; Harris, David
署名单位:
Monash University; University of Liverpool; University of Melbourne
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2010.00762.x
发表日期:
2011
页码:
253-272
关键词:
time-series
models
摘要:
Efficient probabilistic forecasts of integer-valued random variables are derived. The optimality is achieved by estimating the forecast distribution non-parametrically over a given broad model class and proving asymptotic (non-parametric) efficiency in that setting. The method is developed within the context of the integer auto-regressive class of models, which is a suitable class for any count data that can be interpreted as a queue, stock, birth-and-death process or branching process. The theoretical proofs of asymptotic efficiency are supplemented by simulation results that demonstrate the overall superiority of the non-parametric estimator relative to a misspecified parametric alternative, in large but finite samples. The method is applied to counts of stock market iceberg orders. A subsampling method is used to assess sampling variation in the full estimated forecast distribution and a proof of its validity is given.