Riemann manifold Langevin and Hamiltonian Monte Carlo methods
成果类型:
Review
署名作者:
Girolami, Mark; Calderhead, Ben
署名单位:
University of London; University College London
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2010.00765.x
发表日期:
2011
页码:
123-214
关键词:
multinomial probit model
markov-chain
bayesian-analysis
metropolis-hastings
differential geometry
Fisher Information
inference
computation
CURVATURE
CONVERGENCE
摘要:
The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are required to tune proposal densities for Metropolis-Hastings or indeed Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms. This allows for highly efficient sampling even in very high dimensions where different scalings may be required for the transient and stationary phases of the Markov chain. The methodology proposed exploits the Riemann geometry of the parameter space of statistical models and thus automatically adapts to the local structure when simulating paths across this manifold, providing highly efficient convergence and exploration of the target density. The performance of these Riemann manifold Monte Carlo methods is rigorously assessed by performing inference on logistic regression models, log-Gaussian Cox point processes, stochastic volatility models and Bayesian estimation of dynamic systems described by non-linear differential equations. Substantial improvements in the time-normalized effective sample size are reported when compared with alternative sampling approaches. MATLAB code that is available from http://www.ucl.ac.uk/statistics/research/rmhmc allows replication of all the results reported.
来源URL: