High dimensional variable selection via tilting
成果类型:
Article
署名作者:
Cho, Haeran; Fryzlewicz, Piotr
署名单位:
University of London; London School Economics & Political Science
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/j.1467-9868.2011.01023.x
发表日期:
2012
页码:
593-622
关键词:
nonconcave penalized likelihood
model selection
regression
Lasso
CLASSIFICATION
DISCOVERY
摘要:
. The paper considers variable selection in linear regression models where the number of covariates is possibly much larger than the number of observations. High dimensionality of the data brings in many complications, such as (possibly spurious) high correlations between the variables, which result in marginal correlation being unreliable as a measure of association between the variables and the response. We propose a new way of measuring the contribution of each variable to the response which takes into account high correlations between the variables in a data-driven way. The proposed tilting procedure provides an adaptive choice between the use of marginal correlation and tilted correlation for each variable, where the choice is made depending on the values of the hard thresholded sample correlation of the design matrix. We study the conditions under which this measure can successfully discriminate between the relevant and the irrelevant variables and thus be used as a tool for variable selection. Finally, an iterative variable screening algorithm is constructed to exploit the theoretical properties of tilted correlation, and its good practical performance is demonstrated in a comparative simulation study.