Sequential sufficient dimension reduction for large p, small n problems

成果类型:
Article
署名作者:
Yin, Xiangrong; Hilafu, Haileab
署名单位:
University of Kentucky; University of Tennessee System; University of Tennessee Knoxville
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12093
发表日期:
2015
页码:
879-892
关键词:
sliced inverse regression variable selection asymptotic properties central subspace CLASSIFICATION shrinkage
摘要:
We propose a new and simple framework for dimension reduction in the large p, small n setting. The framework decomposes the data into pieces, thereby enabling existing approaches for n>p to be adapted to n
来源URL: