Generalized additive and index models with shape constraints
成果类型:
Article
署名作者:
Chen, Yining; Samworth, Richard J.
署名单位:
University of Cambridge
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12137
发表日期:
2016
页码:
729-754
关键词:
maximum-likelihood-estimation
multivariate convex regression
log-concave density
monotonic regression
isotonic regression
inference
algorithm
selection
Consistency
uniqueness
摘要:
We study generalized additive models, with shape restrictions (e.g. monotonicity, convexity and concavity) imposed on each component of the additive prediction function. We show that this framework facilitates a non-parametric estimator of each additive component, obtained by maximizing the likelihood. The procedure is free of tuning parameters and under mild conditions is proved to be uniformly consistent on compact intervals. More generally, our methodology can be applied to generalized additive index models. Here again, the procedure can be justified on theoretical grounds and, like the original algorithm, has highly competitive finite sample performance. Practical utility is illustrated through the use of these methods in the analysis of two real data sets. Our algorithms are publicly available in the R package scar, short for shape-constrained additive regression.
来源URL: