On estimation of the noise variance in high dimensional probabilistic principal component analysis
成果类型:
Article
署名作者:
Passemier, Damien; Li, Zhaoyuan; Yao, Jianfeng
署名单位:
University of Hong Kong
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12153
发表日期:
2017
页码:
51-67
关键词:
CENTRAL LIMIT-THEOREMS
factor models
COVARIANCE-MATRIX
number
eigenvalues
tests
摘要:
We develop new statistical theory for probabilistic principal component analysis models in high dimensions. The focus is the estimation of the noise variance, which is an important and unresolved issue when the number of variables is large in comparison with the sample size. We first unveil the reasons for an observed downward bias of the maximum likelihood estimator of the noise variance when the data dimension is high. We then propose a bias-corrected estimator by using random-matrix theory and establish its asymptotic normality. The superiority of the new and bias-corrected estimator over existing alternatives is checked by Monte Carlo experiments with various combinations of (p,n) (the dimension and sample size). Next, we construct a new criterion based on the bias-corrected estimator to determine the number of the principal components, and a consistent estimator is obtained. Its good performance is confirmed by a simulation study and real data analysis. The bias-corrected estimator is also used to derive new asymptotics for the related goodness-of-fit statistic under the high dimensional scheme.