Parameter stability and semiparametric inference in time varying auto-regressive conditional heteroscedasticity models

成果类型:
Article
署名作者:
Truquet, Lionel
署名单位:
Ecole Nationale de la Statistique et de l'Analyse de l'Information (ENSAI)
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12221
发表日期:
2017
页码:
1391-1414
关键词:
series nonstationarities
摘要:
We develop a complete methodology for detecting time varying or non-time-varying parameters in auto-regressive conditional heteroscedasticity (ARCH) processes. For this, we estimate and test various semiparametric versions of time varying ARCH models which include two well-known non-stationary ARCH-type models introduced in the econometrics literature. Using kernel estimation, we show that non-time-varying parameters can be estimated at the usual parametric rate of convergence and, for Gaussian noise, we construct estimates that are asymptotically efficient in a semiparametric sense. Then we introduce two statistical tests which can be used for detecting non-time-varying parameters or for testing the second-order dynamics. An information criterion for selecting the number of lags is also provided. We illustrate our methodology with several real data sets.
来源URL: