A geometric approach to confidence regions and bands for functional parameters
成果类型:
Article
署名作者:
Choi, Hyunphil; Reimherr, Matthew
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12239
发表日期:
2018
页码:
239-260
关键词:
regression
SPARSE
摘要:
Functional data analysis is now a well-established discipline of statistics, with its core concepts and perspectives in place. Despite this, there are still fundamental statistical questions which have received relatively little attention. One of these is the systematic construction of confidence regions for functional parameters. This work is concerned with developing, understanding and visualizing such regions. We provide a general strategy for constructing confidence regions in a real separable Hilbert space by using hyperellipsoids and hyper-rectangles. We then propose specific implementations which work especially well in practice. They provide powerful hypothesis tests and useful visualization tools without relying on simulation. We also demonstrate the negative result that nearly all regions, including our own, have zero coverage when working with empirical covariances. To overcome this challenge we propose a new paradigm for evaluating confidence regions by showing that the distance between an estimated region and the desired region (with proper coverage) tends to 0 faster than the regions shrink to a point. We call this phenomena ghosting and refer to the empirical regions as ghost regions. We illustrate the proposed methods in a simulation study and an application to fractional anisotropy tract profile data.