High dimensional change point estimation via sparse projection
成果类型:
Article
署名作者:
Wang, Tengyao; Samworth, Richard J.
署名单位:
University of Cambridge
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12243
发表日期:
2018
页码:
57-83
关键词:
multivariate time-series
maximum-likelihood-estimation
log-concave density
binary segmentation
principal-components
Consistency
THEOREM
摘要:
Change points are a very common feature of big data' that arrive in the form of a data stream. We study high dimensional time series in which, at certain time points, the mean structure changes in a sparse subset of the co-ordinates. The challenge is to borrow strength across the co-ordinates to detect smaller changes than could be observed in any individual component series. We propose a two-stage procedure called inspect for estimation of the change points: first, we argue that a good projection direction can be obtained as the leading left singular vector of the matrix that solves a convex optimization problem derived from the cumulative sum transformation of the time series. We then apply an existing univariate change point estimation algorithm to the projected series. Our theory provides strong guarantees on both the number of estimated change points and the rates of convergence of their locations, and our numerical studies validate its highly competitive empirical performance for a wide range of data-generating mechanisms. Software implementing the methodology is available in the R package InspectChangepoint.