Goodness-of-fit tests for high dimensional linear models

成果类型:
Article
署名作者:
Shah, Rajen D.; Buhlmann, Peter
署名单位:
University of Cambridge
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12234
发表日期:
2018
页码:
113-135
关键词:
VARIABLE SELECTION confidence-intervals general-theory P-values Lasso bootstrap inference regions
摘要:
We propose a framework for constructing goodness-of-fit tests in both low and high dimensional linear models. We advocate applying regression methods to the scaled residuals following either an ordinary least squares or lasso fit to the data, and using some proxy for prediction error as the final test statistic. We call this family residual prediction tests. We show that simulation can be used to obtain the critical values for such tests in the low dimensional setting and demonstrate using both theoretical results and extensive numerical studies that some form of the parametric bootstrap can do the same when the high dimensional linear model is under consideration. We show that residual prediction tests can be used to test for significance of groups or individual variables as special cases, and here they compare favourably with state of the art methods, but we also argue that they can be designed to test for as diverse model misspecifications as heteroscedasticity and non-linearity.
来源URL: