Modified likelihood root in high dimensions
成果类型:
Article
署名作者:
Tang, Yanbo; Reid, Nancy
署名单位:
University of Toronto; Vector Institute for Artificial Intelligence
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12389
发表日期:
2020
页码:
1349-1369
关键词:
ASYMPTOTIC-BEHAVIOR
profile
parameters
inference
models
摘要:
We examine a higher order approximation to the significance function with increasing numbers of nuisance parameters, based on the normal approximation to an adjusted log-likelihood root. We show that the rate of the correction for nuisance parameters is larger than the correction for non-normality, when the parameter dimensionpisO(n(alpha)) for alpha<12. We specialize the results to linear exponential families and location-scale families and illustrate these with simulations.
来源URL: