Model-assisted analyses of cluster-randomized experiments

成果类型:
Article
署名作者:
Su, Fangzhou; Ding, Peng
署名单位:
University of California System; University of California Berkeley
刊物名称:
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY
ISSN/ISSBN:
1369-7412
DOI:
10.1111/rssb.12468
发表日期:
2021
页码:
994-1015
关键词:
recent methodological developments regression adjustments trials inference noncompliance estimator education DESIGN
摘要:
Cluster-randomized experiments are widely used due to their logistical convenience and policy relevance. To analyse them properly, we must address the fact that the treatment is assigned at the cluster level instead of the individual level. Standard analytic strategies are regressions based on individual data, cluster averages and cluster totals, which differ when the cluster sizes vary. These methods are often motivated by models with strong and unverifiable assumptions, and the choice among them can be subjective. Without any outcome modelling assumption, we evaluate these regression estimators and the associated robust standard errors from the design-based perspective where only the treatment assignment itself is random and controlled by the experimenter. We demonstrate that regression based on cluster averages targets a weighted average treatment effect, regression based on individual data is suboptimal in terms of efficiency and regression based on cluster totals is consistent and more efficient with a large number of clusters. We highlight the critical role of covariates in improving estimation efficiency and illustrate the efficiency gain via both simulation studies and data analysis. The asymptotic analysis also reveals the efficiency-robustness trade-off by comparing the properties of various estimators using data at different levels with and without covariate adjustment. Moreover, we show that the robust standard errors are convenient approximations to the true asymptotic standard errors under the design-based perspective. Our theory holds even when the outcome models are misspecified, so it is model-assisted rather than model-based. We also extend the theory to a wider class of weighted average treatment effects.